

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A SECURE ALERT SYSTEM

by

Heng Hui Chew

December 2006

 Thesis Advisor: Gurminder Singh
 Co-Advisor: Karen Burke

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE A Secure Alert System
6. AUTHOR(S) Heng Hui Chew

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The integrated mobile alert system (IMAS) is a mobile device messaging system that provides a means for

people to stay connected and receive information in a modality that is constantly available to them. It was developed
and built into a proof-of-concept (PoC) system at the Naval Postgraduate School (NPS) from commercial off the shelf
(COTS) products. Like other systems, this system suffers from vulnerabilities because of bugs. These bugs come from
(1) COTS products, (2) design of the system and (3) developed processes/applications. The study will review the
design of IMAS, its processes and the COTS products. The focus of the study is to review these components and
identify potential vulnerabilities. Furthermore, it will explain how these vulnerabilities may be exploited by probable
threats. It will recommend solutions that can correct or prevent vulnerabilities. Lastly, the thesis will propose other
measures that would make the system more secure.

15. NUMBER OF
PAGES

83

14. SUBJECT TERMS IMAS, Integrated Mobile Alert System, Identify Potential
Vulnerabilities, Mobile Device Messaging System, Secure Alert System

16. PRICE CODE
17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A SECURE ALERT SYSTEM

Heng Hui Chew
Engineer, Defence Science Technology Agency (DSTA)

B.Eng., Nanyang Technological University, 2000

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2006

Author: Heng Hui Chew

Approved by: Gurminder Singh
Thesis Advisor

Karen Burke
Co-Advisor

Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The integrated mobile alert system (IMAS) is a mobile device messaging

system that provides a means for people to stay connected and receive

information in a modality that is constantly available to them. It was developed

and built into a proof-of-concept (PoC) system at the Naval Postgraduate School

(NPS) from commercial off the shelf (COTS) products. Like other systems, this

system suffers from vulnerabilities because of bugs. These bugs come from (1)

COTS products, (2) design of the system and (3) developed

processes/applications. The study will review the design of IMAS, its processes

and the COTS products. The focus of the study is to review these components

and identify potential vulnerabilities. Furthermore, it will explain how these

vulnerabilities may be exploited by probable threats. It will recommend solutions

that can correct or prevent vulnerabilities. Lastly, the thesis will propose other

measures that would make the system more secure.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. BACKGROUND ... 1
B. PURPOSE.. 2
C. ASSUMPTIONS ... 3

1. Personnel ... 3
2. Deployment of System .. 3
3. Physical Computer Security ... 3
4. Limitations.. 3

II. COTS PRODUCTS AND THEIR VULNERABILITIES.................................... 5
A. INTRODUCTION TO IMAS .. 5
B. WINDOWS 2003 SERVER... 6

1. Common Vulnerabilities.. 9
2. How to Determine if the System Is at Risk 9
3. How to Protect against Vulnerabilities 10

a. Windows Updates and Patches 10
b. Disable/Rename Default Accounts............................ 10
c. Install Anti-Virus Software ... 11
d. Other Protection Measures .. 12

C. IIS6.0 .. 12
1. Reported Vulnerabilities.. 13
2. How to Determine the Vulnerabilities 13
3. How to Protect against Vulnerabilities 13

a. Windows Updates and Patches 13
b. Auditing and Logging ... 13
c. Access-Control ... 13

D. PHP SCRIPTING LANGUAGE .. 14
1. Common Vulnerabilities.. 15

a. PHP Package Vulnerability... 15
b. Remote File Vulnerability ... 15
c. Remote Command Execution Vulnerability.............. 15
d. SQL Injection Vulnerability .. 15
e. Remote Code Execution in Library Vulnerability 15

2. How to Determine the Vulnerabilities 16
3. How to Protect against Vulnerabilities 16

a. Update Patches ... 16
b. Web Scanning ... 16
c. Secure PHP Configuration ... 16
d. Run SQL Injection Test... 16
e. Adopt PoLP (Principle of Least Privilege) 16
f. Upgrade ... 16
g. External Protection Mechanisms............................... 17

E. SQL.. 17

 viii

1. Common Vulnerabilities.. 17
2. How to Determine Vulnerabilities... 17
3. How to Protect against Vulnerabilities 17

a. Update Patches ... 17
b. Secure DBMS and Applications................................. 18
c. Other Security Mechanisms....................................... 18
d. Data Validation .. 18

F. CHAPTER SUMMARY... 18

III. IMAS SECURITY ANALYSIS AND RECOMMENDATIONS........................ 21
A. INTRODUCTION.. 21
B. IMAS FRAMEWORK OVERVIEW ... 21
C. DESIGN AND IMPLEMENTATION.. 23

1. Vulnerabilities .. 23
a. Security.. 23
b. Management Control .. 23
c. Scalability .. 24

2. Tier-Architecture.. 24
a. Physical Implementation .. 24
b. Benefits of 3-Tier Architecture................................... 26

3. Recommended Design and Implementation 27
D. PROCESSES ... 28

1. Registration.. 28
a. Vulnerability - Phishing .. 28
b. How to Detect Phishing .. 28
c. How to Prevent Phishing.. 29

2. Establish Secure Communication Channel......................... 29
a. Vulnerability – Internet Snooping.............................. 29
b. How to Establish Secure Communication

Channel/Session ... 30
c. Deployment in Secure Environment.......................... 30

3. Data Process.. 31
a. Vulnerabilities ... 31
b. How to Correct Input Entry Errors............................. 32
c. How to Correct Data-Type Errors 36
d. Mitigation Techniques .. 37
e. Direct SQL Injection.. 38
f. Mitigation Techniques .. 39

4. Database Process.. 48
a. Vulnerability .. 48
b. How to Protect the Data.. 48

5. Session Login and Profile Updates...................................... 50
a. Secure Authentication .. 51
b. Session Maintenance.. 52
c. Session Management ... 52
d. User Profile Update... 54

 ix

D. ADDITIONAL SECURITY MEASURES... 56
1. Privacy Consideration... 56

a. Warnings.. 56
b. Page Parameters... 56

2. Event Logging.. 56
3. Compartmentalization of Data .. 57
4. Encryption.. 58
5. Caching .. 58
6. Production Site .. 59
7. DMZ... 59

E. CHAPTER SUMMARY... 60

IV. CONCLUSIONS.. 61

LIST OF REFERENCES.. 63

INITIAL DISTRIBUTION LIST ... 67

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. IMAS supporting components .. 2
Figure 2. Number of vulnerabilities reported.. 7
Figure 3. Solution Status ... 7
Figure 4. Criticality report of the vulnerability... 8
Figure 5. Location of attack ... 8
Figure 6. Types of attacks ... 9
Figure 7. Default accounts... 11
Figure 8. IMAS Framework.. 22
Figure 9. 3-tier architecture.. 24
Figure 10. 2-box implementation ... 25
Figure 11. 3-box implementation ... 25
Figure 12. Proposed 3-tier architecture ... 27
Figure 13. IMAS registration menu .. 31
Figure 14. IMEI analysis output ... 35
Figure 15. Calendar view... 54
Figure 16. Event Entry Menu... 55

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I would like to thank Prof Gurminder Singh and Prof Karen Burke for their

support and guidance towards this thesis.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. BACKGROUND
In today’s modern society, mobile devices are getting smaller, more

powerful and packed with many functionalities that people use to surf the web,

listen to their favorite songs or even watch a movie. It is no wonder that they

have become an ubiquitous facet of our daily lives. Carrying a mobile device

allows individuals to stay connected with their family, friends or business

associates. People today carry more than one mobile device with them, e.g.,

cellular phones, smart-phones, BlackBerry, Portable Digital Assistant (PDA),

pagers and laptops

A mobile alert is a mode of push communication whereby users are

notified or informed of a piece of information/event by their mobile devices. This

could be in the form of a page by a pager, simple text message (SMS),

multimedia message (MMS), e-mail, voice-mail or instant message (IM) that is

readily available to the mobile devices. Hence, with mobile alerts, people are

able to stay connected to the world they live in. They may receive the latest stock

price information from the stock market, a reminder of an appointment, a

situational awareness report of the battleground by troops, an emergency alert

from authorities and many others.

However, there are times when the mode of reaching a person is

inappropriate, i.e., it is context-insensitive to the environment in which the person

is located. A person in a meeting, watching a movie, or attending a concert,

would prohibit the ring of a call. Therefore, it would be nice if an integrated

mobile alert system (IMAS) was available - a system that could transform the

mobile alerts into a mode that is appropriate and non-interruptive to the

environment that person is in. The person may specify the environment and the

mode of alerts they prefer to receive. That way, an alert could always reach the

2

person regardless of the environment they are in. Two students, Hsu and Le [1],

took this idea and built a proof-of-concept (PoC) system using commercial-off-

the-shelf (COTS) products to illustrate the advantages of this system.

B. PURPOSE
The purpose of this thesis is to study and evaluate IMAS and identify

vulnerabilities in the system so that solutions or mitigation methods can be

proposed to secure the system. The vulnerabilities come from all components of

IMAS. These components include:

• COTS products

• Design and implementation of IMAS

• Applications/functions
Figure 1 shows the software components that compose IMAS. It consists

of in-house developed web applications and COTS products. The COTS

products used in IMAS include (1) the operating system (Windows 2003 Server

Standard Edition), (2) the web server (IIS6.0), (3) the scripting language (PHP)

and (4) the database server (MySQL 5.0.18).The focus of this thesis is to review

these components and identify potential vulnerabilities. Furthermore, it will

explain how these vulnerabilities may be exploited by probable threats. It will

recommend solutions that can correct or prevent vulnerabilities. Lastly, the thesis

will propose other measures that would make the system more secure.

Figure 1. IMAS supporting components

3

C. ASSUMPTIONS
In this thesis, certain assumptions are being made so that the evaluation,

solutions and mitigation methods proposed are valid in the assumed context and

environment.

1. Personnel
It is assumed that all personnel accessing the system are trustworthy, i.e.,

their security clearances have been verified and they have received appropriate

security training. This will prevent them from jeopardizing the system and putting

the security of the system at risk. It will also be assumed that all personnel will

follow all requisite procedures for system access.

2. Deployment of System
It is assumed that the system is deployed in a secure room where physical

access to the room is controlled either by a personal identification number (PIN)-

based entry system or a smart-card/magnetic-striped entry system. This allows

only authorized personnel to access the room after they have cleared the

identification and authentication process. In addition, this type of entry system

provides an entry record for audit to be conducted and reviewed. The walls and

ceiling of the room are assumed to be hardened to prevent easy penetration.

3. Physical Computer Security
The system is assumed to be protected by a common access card (CAC)

system to prevent un-authorized personnel from accessing the system physically.

Only authorized personnel with a valid CAC card authenticated by the system

can access the applications. Procedures will be in-place requiring a person to

either log off or lock their computers via “screen lock” when leaving the system

unattended for a pre-determined period of time.

4. Limitations
Due to limited time available, the software codes of in-house developed

processes/applications and the database design will not be analyzed in this

thesis.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. COTS PRODUCTS AND THEIR VULNERABILITIES

A. INTRODUCTION TO IMAS
IMAS is created to provide a common medium for people to stay

connected by receiving alerts across a wide variety of platforms. It allows users

to configure their daily schedules and mode of alerts they wish to receive. The

system can then coordinate the sources of alerts and reconstruct them to reach

the users in the most appropriate and non-interruptive way.

Unfortunately, like many systems, IMAS suffers from security

vulnerabilities that make it an easy target for attacks. The sources of these

vulnerabilities include components that are used to develop the system and

system design and implementation bugs. The components include COTS

products like the hardware, operating systems, commercial applications and in-

house developed applications. The attacks often lead to (1) system crashes, (2)

corruption of data, (3) theft of information, or (4) sending of alerts to a wrong

party. These attacks are disastrous and undesirable to both the system and the

people involved. Hence, to ensure that IMAS is not subjected to subversion and

exploitation, these vulnerabilities must be removed or prevented.

IMAS is composed of COTS products and in-house developed

applications. The former provides the infrastructure and general services while

the latter provides specific services pertaining to IMAS. COTS products are often

vulnerable because of bugs in (1) software codes, (2) design errors in the

applications and (3) mis-configurations in the installations. This chapter will

review the COTS products used in IMAS and highlight common vulnerabilities

reported in each component. Furthermore, it will recommend best-practiced

methods to reduce and mitigate vulnerabilities. It will cover: (1) the operating

system (Windows 2003 server standard edition) that manages the system, (2)

the web server (IIS6.0) that hosts the web pages, (3) the scripting language

(PHP) that is used to create the applications and (4) the database (MySQL) that

stores and retrieves data.

6

B. WINDOWS 2003 SERVER
The operating system, Windows 2003 server standard edition in the case

of IMAS, is the core of any system. It manages the resources of the system and

ensures that all requests, locally or remotely, from the applications run timely and

successfully. Windows 2003 server is considered the most secure and reliable

operating system to date. It is built by Microsoft under the Trustworthy Computing

initiative. Under this initiative, the programmers were trained to write secure

codes. These codes are inspected and scrutinized for vulnerabilities. In addition,

Windows 2003 server simplifies the usage and management of its suite of

security functionalities, e.g., public key infrastructure (PKI) authentication

services, single-sign-on (SSO) session and identity management control. The

security functions prevent or minimize users from making mistakes that might

violate the security of the system. A special tool, security configuration wizard

(SCW), is also incorporated into the operating system to help users configure the

system in the most secure mode. In this mode, all unused services are turned off

by the operating system by default and no administrator is allowed to logon

remotely using a null password. [2]

Despite this, Windows 2003 server still suffers from vulnerability attacks.

Figure 2 shows a vulnerability report on Windows 2003 server standard edition

published by Secunia [3], from January to November 2006. There were

vulnerabilities reported every month except for March.

7

Figure 2. Number of vulnerabilities reported

Figure 3 shows that among the vulnerabilities reported, only 93% of them

could be fixed with patches and no patches were available for the remaining 7%.

Figure 3. Solution Status

Figure 4 shows that among the vulnerabilities found, 10% were extremely

critical and 30% were rated highly critical. This 40% requires immediate remedy

actions to be taken.

8

Figure 4. Criticality report of the vulnerability

Figure 5 shows that on vulnerability-based attacks, 90% were launched

from network-based systems. Of these attacks, 63% were from remote systems

and 27% from local network systems. The remaining 10% came from local

systems.

Figure 5. Location of attack

Figure 6 shows that among the vulnerability-based attacks, 58% were

system-accessed in nature while the other attacks such as denial-of-service

(DoS) and privilege-escalation took up 18% and 13%, respectively.

9

Figure 6. Types of attacks

1. Common Vulnerabilities
Among the vulnerabilities reported on Windows 2003 server standard

edition that surfaced from 2005 to 2006 by SecurityFocus [4], it was discovered

that most of the reported vulnerabilities come from bugs or design errors in the

software code. A majority of the vulnerabilities reported fell into three primary

areas: (1) boundary condition error, (2) failure to handle exceptional conditions

and (3) input validation error. These vulnerabilities were found in (1) Internet

Explorer (IE) 6 (the web browser that comes bundled with Windows 2003 server),

(2) window libraries in the likes of “.dll” files and (3) windows explorer. These

vulnerabilities could lead to many potential remote attacks. For instance,

malicious media files, web pages, or images could be used to crash the system

and prevent it from delivering service. Hence, to prevent the system from

succumbing to these types of vulnerability exploits, it is necessary to determine

the presence of these vulnerabilities and fix them.

2. How to Determine if the System Is at Risk
The common practice to determine if the system is at risk is to use a

vulnerability scanner such as Nessus or Microsoft Baseline Security Analyzer

(MBSA) .These tools allow the users to determine the system vulnerabilities’

presence so that actions can be taken to resolve or mitigate them. Nessus is a

security tool that scans all the ports used by the services running on the system(s)

10

and also tries to exploit these ports. MBSA is a vulnerability tool offered by

Microsoft that checks the configuration of the operating system for missing

patches, user accounts without passwords and available updates. It will highlight

any vulnerabilities that do not conform to its security checklist. Both scanner

programs provide users with a report that highlights vulnerabilities detected.

3. How to Protect against Vulnerabilities
Once the vulnerabilities have been determined, necessary steps must be

taken to reduce them and protect the system. Some of the best practices

adopted are as follows.

a. Windows Updates and Patches
Ensure that patches and service packs (hot-fixes) are always up-to-

date to prevent any exploitation of vulnerabilities. Windows 2003 server provides

the user with options to update the patches and service packs automatically.

However, as the patches might introduce additional bugs and vulnerabilities, it is

advisable to update patches only when a common consensus is reached among

all security advisories.

b. Disable/Rename Default Accounts
As part of the process of securing the server, all un-used default

accounts must be disabled or renamed. In Windows 2003 server, there are

numerous built-in accounts that can be used by default as shown in Figure 7.

This is a common thread for attack.

11

Figure 7. Default accounts

To prevent this type of attack, it is mandatory to always change the

name or disable default accounts. Accounts in Windows 2003 server that are

highly common (and built-in) are the Guest and Administrator accounts. It is

recommended to rename the default Administrator account to enhance system

security. It is also advisable to create a backup Administrator account to protect

primary Administrator account log-out. [5]

c. Install Anti-Virus Software
Currently, most viruses are created to attack Windows systems. To

prevent such attacks, anti-virus software must be installed and signatures must

be updated regularly. In addition, the system must be scanned regularly to

ensure that it is free of viruses. Norton and MacAfee are two popular choices for

anti-virus software.

12

d. Other Protection Measures
Other security measures recommended to protect the system

include the following:

• Implement NTFS (New Technology File System) – NTFS is a
windows file system developed for Windows NT that provides a
good method to implement security on the file system. It provides
the capability to impose an access-control list (ACL) to files and
folders, thereby permitting or disallowing peoples’ access. In the
newest NTFS, i.e., NTFS5, it provides additional capability to
encrypt files and folders. This will keep files safe from intruders who
might try to gain unauthorized physical access to sensitive and
stored data.

• Disk Segmentation – it is always advisable to separate specific
data, e.g., sensitive and non-sensitive data, on separate physical
disks. This prevents attackers from traversing the web site directory
trees inside the web server. This in turn provides another security
layer to deter attackers from gaining access to the cmd.exe utility
remotely.

• Install Host-based Intrusion protection System (HIPS) /Host-
based Intrusion detection system (HIDS) – this agent, which is
installed on the system, monitors activities in the system against a
set of specific patterns or signatures. If an anomaly activity is
detected, it will either block the activity by the HIPS or inform the
user through HIDS.

C. IIS6.0
IIS6.0, which comes bundled with Windows 2003 server, was designed to

be a secure product. It was re-architected and built on a Windows Server 2003

platform exclusively. Most of the services and features were turned off by default

to prevent any possible attacks. In the new architecture, all web applications are

serviced individually by a dedicated worker process in an application pool.

Therefore, if one process fails, it will not affect other processes. In addition, the

anonymous account, which comes with IIS6.0 by default no longer, has write

permissions on the default web root folder. This prevents any attacker from

taking advantage of this vulnerability. [6] However, like Windows 2003 server, it

lends itself to vulnerabilities because of bugs and design errors in the software

code.

13

1. Reported Vulnerabilities
Among the vulnerabilities reported by SecurityFocus [7], the most noted

vulnerabilities are those pertaining to (1) remote buffer overflow, (2) web admin

console, (2) disclosure of IP and (4) internal address. All of these vulnerabilities

stem from the application’s inability to validate input or design errors in the

software code.

2. How to Determine the Vulnerabilities
The vulnerabilities of IIS6.0 can be determined by the use of a

vulnerability scanner such as Nessus or MBSA. All services and ports identified

by Nessus can be checked against IIS6.0 to determine if they are needed. Any

un-used ports and services should be turned off. MBSA would determine the

latest patches and fixes that should be patched to prevent IIS6.0 from possible

vulnerabilities.

3. How to Protect against Vulnerabilities
a. Windows Updates and Patches
Ensure patches and service packs (hot-fixes) are always up to date

to prevent any exploitation of vulnerabilities. However, as patches might

introduce bugs, it is advisable to update patches only when a common

consensus is reached among all the security advisories.

b. Auditing and Logging
Logging must always be enabled to keep track of all accesses and

requests made at the web server. The auditing provides valuable information

about possible attacks on the web server, which is useful during incident

handling. To prevent log files from being accessed by un-authorized personnel, it

should be secured with NTFS permissions. Log files should also be audited on a

routine basis to detect any anomaly activity.

c. Access-Control
Access-control should always be in place to deter or defend against

attackers. lt can be applied to (1) control applications running on the server, (2)

14

restrict files served by the server and (3) limit access to the web site hosted by

the server. To ensure access-control security, the following recommendations

are made [8]:

• Applications - only enable those web service extensions that have a
corresponding application or web service hosted on the web server.
By default, IIS6.0 enables ASP, ASP.NET, Front Page Server
extensions, Internet Data Connector (IDC), Server Side Include
(SSI). It is recommended to disable all unknown ISAPI extensions
or all unknown CGI extensions. This will reduce the probability of
vulnerability attacks associated with these applications.

• Files – only enable those files that are served by the server. It is
recommended never to enable wildcard “*” as this will permit IIS6.0
to serve any file type (including .ini, .bat) to the client. This will
increase the probability of handling any malicious files.

• Website permissions – website permissions should always be
exercised with caution and be granted on an as-needed basis. By
default, all users from the Internet are granted read permission that
allows them to view the contents hosted by the server. Write and
executable permissions are disabled by default. This prevents any
un-authorized person from the Internet to upload malicious files to
the server or execute malicious scripts on the server. Hence, it is
recommended to grant write and executable permissions on an as-
needed basis. It is also recommended to put all executable and
script files in one directory so that it is easy to configure access
permissions and audit special access permissions.

• User accounts – IIS6.0 provides four built-in accounts: (1)
LocalSystem account that is part of the administrators group which
has administrator rights, (2) Network Service account that has
fewer permissions on the system, (3) Local Service account that
has the same privileges as the Network Service account on the
local machine but cannot access resources across the network and
(4) IIS_WPG group account that is assigned minimum permissions.
This account is also used to start any worker process. It is
recommended to assign users to either the Network Service
account or the Local Service account depending on the services
and resources they required. No users should be assigned to
LocalSystem account because this account has a high level of
access rights and has been a target for many exploits.

D. PHP SCRIPTING LANGUAGE
PHP is the most widely used scripting language for the web. Based on

some reports, 50% of the Apache servers world-wide have PHP installed. A large

number of Content Management Systems (CMS), portals and bulletin boards (BB)

15

are written in PHP. Despite its popularity and widespread-usage, PHP is plagued

with vulnerabilities. It was reported by SANS that in 2005, a problem was

reported at least every single week in some software using PHP. [9]

1. Common Vulnerabilities
Some of the common vulnerabilities reported include the following.

a. PHP Package Vulnerability
This vulnerability is found in the PHP package itself and is caused

by flaws in the way the PHP package software handles POST requests. It was

reported that each of these flaws could allow an attacker to execute arbitrary

code on the remote system.

b. Remote File Vulnerability
This vulnerability is found inside the application using PHP and is

due to the application’s failure to handle maliciously crafted file properly. This

allows an attacker to run malicious code on the vulnerable web server.

c. Remote Command Execution Vulnerability
This vulnerability is found in applications using PHP and is due to

the application’s failure to process data that contains commands properly. This

allows attackers to execute commands remotely that may compromise the

application and underlying system.

d. SQL Injection Vulnerability
This vulnerability is found in applications using PHP and is due to

the application’s failure to sanitize variables used to construct SQL queries. This

permits attackers to inject SQL code into the variables. This attack is commonly

used to recover password hashes for administrators of the PHP applications.

e. Remote Code Execution in Library Vulnerability
This vulnerability is found in libraries using PHP and is due to a

failure in the library to properly conduct a sanity check on the input. This permits

attackers to execute code remotely in libraries. The “Lupper worm” is a worm that

was created to exploit remote execution vulnerabilities in these libraries.

16

2. How to Determine the Vulnerabilities
The vulnerabilities of PHP can be determined by scanning the web

servers periodically with a vulnerability scanner. Common PHP vulnerability

scanners are (1) Acunetix web vulnerability scanner [10], (2) remote PHP

vulnerability scanner [11] and (3) File inclusion scanner [12].

3. How to Protect against Vulnerabilities
The best practices to protect against PHP vulnerabilities are listed as

follows.

a. Update Patches
Always apply all vendor patches for PHP and PHP-based

applications.

b. Web Scanning
Always run a vulnerability scanner on the web site frequently or

periodically.

c. Secure PHP Configuration
Always secure PHP configuration by disabling the parameters

“register_globals”, “allow_url_fopen” and “magic_gpc_quotes” and enabling the

parameters “safe_mode” and “open_basedir”.

d. Run SQL Injection Test
Always conduct automated SQL injection tests against PHP

applications hosted by the web server using web application security assessment

tools like Paros Proxy.

e. Adopt PoLP (Principle of Least Privilege)
Always adopt POLP for running PHP using tools such as

PHPsuExec, and php_suexec. These are modules/software that allow users to

impose ACL on the PHP files. This allows only limited/authorized persons to

access and operate PHP files.

f. Upgrade
Always upgrade to the latest version of PHP as it will eliminate

many existing PHP security issues. At the time of this writing, the latest version is

PHP 5.

17

g. External Protection Mechanisms
Always use an intrusion prevention/detection system that will

block/alert any malicious HTTP request(s).

E. SQL
Databases are a key element for data storage, searching or manipulation

in many systems. They can be found virtually everywhere, from businesses,

financial and banking institutions, to schools and anywhere that requires

manipulation of large data. Due to the valuable information they store such as

passwords and financial details, they are often a target of attacks. [13] To make

matters worse, these attacks could be easily conducted by anybody who has a

query tool because most modern relational databases are port addressable. The

attackers could connect directly to the database using the query tool and bypass

security mechanisms used by the operating system.

1. Common Vulnerabilities
Among vulnerabilities reported in databases, the most common

vulnerabilities can be classified into the following categories:

• Buffer overflows in processes that listen to well-known TCP/UDP
ports

• SQL injection via web entry

• Databases running in default configuration with default usernames
and passwords

• Databases running with weak passwords for privileged accounts
2. How to Determine Vulnerabilities
The vulnerabilities of the database could be determined by using a

vulnerability scanner or tools offered from database vendors such as MySQL

network scanner and Microsoft SQL server tool.

3. How to Protect against Vulnerabilities
Some of the recommended practices to protect against database

vulnerabilities are listed as follows.

a. Update Patches
Always ensure all DBMS have up-to-date patches because any un-

patched or outdated versions are likely to contain vulnerabilities.

18

Always check vendor sites for patch information and subscribe to

vulnerabilities alerts offered by the vendor. For MySQL, the web site is:

http://lists.mysql.com/.

b. Secure DBMS and Applications
Always secure DBMS and its applications. This includes:

• Adopt least privilege principle for DBMS access

• Remove/change default passwords on the database’s privilege and
systems accounts

• Use store procedures where possible

• Remove/disable unnecessary procedures

• Set length limits on form fields
c. Other Security Mechanisms
Always use firewalls or other security devices to control network

access to ports associated with database services.

d. Data Validation
Always ensure that the application performs data validation and

sanitation at the server end to prevent attacks such as SQL injection or buffer

overflow.

F. CHAPTER SUMMARY
This chapter observed that COTS products, typically software components,

are plagued with vulnerabilities that stem from bugs or design errors in the

software code. These vulnerabilities are exploited by attackers that often lead to

(1) system crashes, (2) theft of information or (3) corruption of data. These

attacks are disastrous to both the system and the people involved, including

IMAS. Although patches and mitigation methods are always available to reduce

and prevent against such vulnerabilities, they are reactive in nature. They are

always available after the vulnerability has been reported. This opens up a

vulnerability window where systems are susceptible to attacks. In addition, since

most, if not all software codes contain bugs, users are expected to patch or apply

mitigation methods whenever a vulnerability is reported.

19

The next chapter reviews the framework of IMAS. It will analyze its design

and processes to uncover and identify possible vulnerabilities. Furthermore, it will

discuss how these vulnerabilities are exploited by well-known attacks. It will also

provide solutions or mitigation techniques to help reduce and prevent these

vulnerabilities.

20

THIS PAGE INTENTIONALLY LEFT BLANK

21

III. IMAS SECURITY ANALYSIS AND RECOMMENDATIONS

A. INTRODUCTION
This chapter studies the framework of IMAS and reviews two areas: (1) its

design architecture and (2) how in-house developed applications handle input, to

determine probable vulnerabilities. It will step through the flow of IMAS processes

to determine probable vulnerabilities in each of them. The study will focus

specifically on identifying vulnerabilities of in-house developed applications that

are frequently exploited by common attacks and understand why they succeed.

Furthermore, it will cover wrong-input-entry vulnerabilities. It will then propose

various countermeasures to show how these vulnerabilities can be mitigated. In

addition, the study will suggest security methods to protect the data from

unauthorized access and modification. Other security measures are

recommended to make IMAS more secure.

B. IMAS FRAMEWORK OVERVIEW
The IMAS system was constructed based on a framework shown in Figure

8. In this figure, an IMAS user enters the web portal system through a profile

interface. However, before the user is able to use the system, he/she must create

an account in the system. Here, the user enters the following information:

• first name

• last name

• desired user name

• password

• e-mail address

• e-mail password

• IM screen-name

• IM provider

• cell-phone number

• cell-phone provider

• cell-phone model

22

This information, less the cell phone model, is stored in the user profile.

The cell phone model is stored in the device profile. After registering, the user

logs into IMAS to enter his/her schedule. Here, they will be presented with a

calendar menu from which they will select the date of the event. They will then

enter the (1) description, (2) time, and duration, (3) context and (4) types of alert

they want to receive. This information is stored in the user profile. IMAS currently

offers three context types: (1) general, (2) meeting and (3) do not disturb. In the

general context, the user will receive one of the following: (1) SMS message, (2)

IM, (3) e-mail, or (4) cell-phone call. In the meeting context, a SMS message, IM,

or e-mail will be sent. In the do not disturb context, an e-mail is the only alert

disseminated. According to the user-set parameters in the user profile, when an

alert comes in through the media storage, IMAS will perform an alert-

transformation in the alert construction. Here, it transforms the incoming alert to

an alert specified by the user. After the alert is made, the system sends it to the

user thorough the alert retrieval and dissemination stage. [14]

Figure 8. IMAS Framework

23

C. DESIGN AND IMPLEMENTATION
The IMAS was built on a single computer (a Dell Optiplex GX270 3.2GHz,

1GB RAM and 30GB HDD) running all its services/applications and data.

Although this design and implementation is a cheap and a quick means to build a

system, it is considered a bad implementation because it is a single point of

failure. If the box is taken down, all the services will be lost, i.e., loss of

availability.

1. Vulnerabilities
The single-box design implementation suffers vulnerabilities in the

following areas.

a. Security
Since the data is housed in a single box with the

services/applications, all the data could be compromised if the web server is

exploited. An attacker could gain access to all the data, even though they are

housed in different directories. This is known as the directory traversal attack.

This box could also be used as a launching pad against other corporate

computer systems if the computer is on a corporate local area network. In

addition, the attackers could use services not required by IMAS for an exploit.

This implementation denies the flexibility of deploying other security options. It

weakens the security of IMAS due to the difficulty of applying appropriate security

options on different applications and data residing inside the same box.

b. Management Control
By incorporating all the services and applications within a single

box, the management control of people’s access will be complicated. People

from various departments managing different services or applications are

required to access the system to maintain and support numerous operations. If

the management control of personnel access is not handled properly, system

degradation increases.

24

c. Scalability
A single-box implementation does not scale well because upgrades

to applications or the physical box will bring the system down. In addition, it will

be taxing on computing resources if traffic is heavy. This would lead to a potential

loss of service when traffic is beyond the threshold of the system.

2. Tier-Architecture
The common practice to overcome issues discussed previously is to

separate applications into tiers and implement them into a 3-tier architecture. [15,

16] Figure 9 shows an overview of the 3-tier architecture. This architectural tier

consists of the: (1) web, (2) application and (3) database.

Figure 9. 3-tier architecture

The web tier provides static content, e.g., simple HTML pages to users

with web applications. The application tier provides dynamic content, e.g.,

applications and processing logic, while the database tier provides access to the

database for data storage and retrieval.

a. Physical Implementation
The 3-tier architecture should be implemented using either a 2-box

or 3-box approach. In the 2-box implementation, the web and application tier are

co-located and run within a single box while the database tier is in a separate box.

In the 3-box implementation, each tier is run on a single box. Figure 10 and

Figure 11 show the 2-box and 3-box physical implementation, respectively.

25

Figure 10. 2-box implementation

Figure 11. 3-box implementation

26

b. Benefits of 3-Tier Architecture
The 3-tier architecture is recommended over the single-box

architecture due to numerous benefits it provides. The benefits are discussed as

follows.

• Security – The 3-tier architecture offers several security benefits.
They are listed as follows.

• Data is better protected - With the separation of applications
and data into tiers, logically and physically, data does not
reside in the same box as applications. This provides
another layer of defense against data access. Hence, if the
web server is compromised, attackers will not be able to
access data directly. This prevents information leakage.

• Impact is minimized – With separation, only the box that is
compromised is affected. It will not affect other systems on
the network, i.e., impact is contained within a single box.
Hence, the impact is minimized.

• Deployment of appropriate security options – With
separation, it allows the deployment of appropriate security
options on different boxes and applications. For example,
ACL could be applied to the database to control the access.
The application proxy/FW or host based IPS/IDS/FW could
also be installed on each box to filter out any
unwanted/suspicious traffic.

• Control of unwanted services – With separation,
services/applications running on each box are better
controlled. Unwanted services are turned off to prevent
attackers from exploiting them.

• Higher Availability – The 3-tier architecture offers a higher
availability. Each tier can deploy multiple boxes offering the same
service simultaneously. Therefore, if a single box goes down,
service will not be disrupted. Instead, the service can be provided
by the other boxes in the same tier.

• Stronger Management Control – The 3-tier architecture provides
stronger management control in two aspects: (1) applications
running in the system and (2) personnel access. With applications
de-lineated and separated into tiers, the system can control the
types of applications running in each box. Applications not
belonging to the tier will not be allowed to run in the box. This in
turn, limits the access of personnel supporting the applications.
Personnel supporting one tier will not be allowed to access the box
belonging to the other two tiers.

27

• Better Scalability – The 3-tier architecture offers better scalability
because it allows upgrades (hardware and software) without loss of
service. Since this architecture offers HA, hardware and software
upgrades could be implemented incrementally i.e., one box at a
time without disrupting the service.

3. Recommended Design and Implementation
The 2-box approach is recommended for IMAS. This approach is cheaper

and consumes less bandwidth (as there are fewer tiers). Figure 12 shows the

proposed 3-tier architecture based on a 2-box approach.

Figure 12. Proposed 3-tier architecture

The servers are deployed inside a demilitarized zone (DMZ) for enhanced

security. DMZ is an isolated network that sits between the Internet and the

Intranet. It is protected by two firewalls. The firewall facing the Internet controls

access between the Internet and DMZ. The firewall facing the Intranet limits

access from the Intranet to DMZ. It does not allow hosts from DMZ to access the

Intranet. This prevents attackers from using IMAS as a launching pad to attack

the Intranet if it is compromised. The database server is placed in a different

28

segment in the DMZ, separated from the web and application server. This

provides an additional layer of defense, which deters attackers from accessing

data easily.

D. PROCESSES
This section will step through the IMAS processes and identify probable

vulnerabilities.

1. Registration
Registration is the first process a user interacts with IMAS before he/she

can use the system. In this process, the user registers an account and inputs

his/her personal and device profile information. However, prior to registration, the

user must verify that they are gaining access to IMAS and not a bogus server

hosted by fraudsters.

a. Vulnerability - Phishing
“Phishing is a criminal activity using social engineering techniques.

In this act, phishers attempt to fraudulently acquire sensitive information, such as

passwords and credit card details, by masquerading as a trustworthy person or

business in an electronic communication.” [17] In the context of this thesis,

phishing refers to users being led or directed to a masqueraded web site that

looks identical to the lMAS. However, it is hosted by attackers without the

knowledge of end users or IMAS’s owner. When users are on this masqueraded

web site, they log in and unknowingly release their personal information.

b. How to Detect Phishing
There are various ways to determine phishing. The most common

and effective way is to use anti-phishing software. This software validates if the

website is a phishing website by checking against a list of reported or blacklisted

phishing websites. The following is a list of anti-phishing software recommended:

[18]

• Earthlink Tool Scamblocker – This software offers a check against
a list of blacklisted phishing website. It checks the owner and
location of the web site. In addition, it prevents against phishing and
pop-ups.

29

• Corestreet’s SpoofStick – This software validates the web site by
using the browser's internal read-only variables to display the top
and second level domain name that the user is browsing.

• TrustWatch Toolbar – This software checks in real-time if the web
site has been verified by a trusted third party.
c. How to Prevent Phishing
Based on studies conducted on anti-phishing [19, 20], it is

recommended that IMAS implement the following measures:

• Distinguish the IMAS site from the malicious site - Always use a
single domain name that matches the system, e.g., www.imas.com
rather than using an IP address or multiple domain names for the
server. This enables users to better distinguish the web site from
malicious web sites. IMAS should not be sharing the web server
with other web applications to prevent confusion.

• Public Certificate – IMAS should implement public key
infrastructure (PKI) technology. PKI is an arrangement that
provides a trusted third party who completes a validation check and
vouches for user identities. IMAS should generate a public/private
key pair and register it with a trusted certificate authority (CA), e.g.,
Verizon, RSA Security Inc., to obtain its digital certificate. CA is a
trusted third party entity that vets and certifies the identities of the
users or systems. After certifying, it binds their public keys and their
identities into a digital certificate signed by the CA. Users may then
verify the web server using their own web browser. If the server
uses a certificate that is not signed by a trusted CA, the browser will
issue a warning alerting the user.

• Encrypt every page – All the pages in IMAS should be encrypted
using secure socket layer (SSL) /transport layer security (TLS).
This will allow the web browser used by the user to authenticate
that the page comes from IMAS. SSL/TLS are cryptographic
protocols which provide secure communications on the Internet for
things such as web browsing, e-mail, Internet faxing, and other data
transfers.

2. Establish Secure Communication Channel
All registrations should be conducted in a secure mode, i.e., all data input

by users should be encrypted. This is because data submitted by users is

confidential and sensitive.

a. Vulnerability – Internet Snooping
By default, communications over the web are conducted in clear

text using http protocol. If an attacker is eavesdropping or snooping on the

30

Internet, the attacker will know what is being communicated. The attacker may

then use this information to impersonate the user and gain access to the user’s

bank account or credit card information. This is disastrous and undesirable.

Likewise, if the registration for IMAS is conducted in clear text using

http protocol, it is likely that data will be eavesdropped or intercepted by attackers

snooping on the Internet. This results in a loss of confidentiality. Thus, to prevent

this form of vulnerability, it is necessary to establish a secure communication

channel/session between users and IMAS before and during the registration

process. This ensures that all data transmitted are secure. This secure

communication channel must always be established whenever any confidential

information needs to be communicated between users and IMAS.

b. How to Establish Secure Communication
Channel/Session

IMAS should use SSL/TLS to establish a secure session between

the web server and the user. SSL/TLS supports two modes of authentication to

establish a secure communication session: (1) server and (2) server and client.

In the server-authentication mode, only the server is authenticated by the client.

Here, the web browser will check the certificate used by the web server. If it is

not signed by a trusted CA, the web browser will give a warning informing the

user. In the second mode, the server and client are mutually authenticated. Once

the authentication is completed, a session key will be generated to encrypt the

session between the server and the user. This session key is only valid during

this session. If a new session is established, a new session key is used.

c. Deployment in Secure Environment
If IMAS is used in a corporate or secure environment, it is

recommended to include SSL/TLS server-client authentication together with the

standard username and password authentication implemented by the system.

This provides a more restricted access. If the user does not have their CAC that

stores the private key, then the system will deny the user from establishing a

session to IMAS.

31

3. Data Process
In the registration process, an IMAS user will enter the following: (1) e-mail

address, (2) e-mail password, (3) IM username, (4) IM provider, (5) cell phone

number, (6) cellular provider and (7) cell phone model. Figure 13 shows the

registration menu of IMAS. Once the user has input the data and clicked on the

submit button, the data will then be sent to IMAS for processing. However,

before data can be processed by any application(s), it must be validated at the

server-end for correct and non-malicious entry.

Figure 13. IMAS registration menu

a. Vulnerabilities
The input submitted by users is likely to contain errors due to typing

errors or “fat finger” mistakes. This leads to incorrect information being captured

by IMAS. As a result, the system is unable to deliver alerts to the user (causing a

loss of service) which is detrimental to IMAS effectiveness. Hence, it is vital to

ensure that data is submitted correctly.

In addition, data type validation is imperative. Based on a report by

Gartner, most web application attacks in 2004 [21] were a result of web

applications’ failure to check and validate input entry before any application

execution. This creates an opportunity for the attacker to sneak in malicious

characters or scripts that exploit the vulnerability of the underlying protocols

32

supporting applications such as PHP, MySQL and the operating system. Hence,

it is also necessary to perform data validation at the trusted server-end, before it

is being used by the application.

b. How to Correct Input Entry Errors
The way to ensure data is free of input entry errors is to perform

data-correction checks. This section proposes several data-correction check

methods for each field in the registration menu. These methods leverage

existing services/programs/scripts available to perform the check to minimize the

programmer’s effort. The programmer just needs to write a script to use these

services. However, it should be noted that these services are written by un-

trusted parties. Therefore, it is necessary that these programs be reviewed by a

group of security programmers to ensure they do not contain malicious code. In

addition, these programs must be tested rigorously to ensure they do not contain

malicious codes. The validation check for each field is listed as follows.

(1) E-mail Address and Password Validation Check.

There are two ways to validate an e-mail address and password: (1) script or (2)

external web mail retrieval service. IMAS could leverage these two methods as

follows:

• Script – The script polls the mail server with an e-mail address and
password entry provided by the user. If the e-mail address and
password entry are valid entries, the mail server will return a
successful reply. If an unsuccessful reply is received, IMAS can
provide feedback to the user that the entries submitted are invalid
and ask him/her to verify the entries. “Pop3 account polling”, is a
software written in perl script that works on this principle. [22] It
polls an external POP3 account on a regular basis and retrieves
any e-mail messages. It then executes an e-mail processing
program, e.g., Outlook, and feeds the message text to the
program's standard input.

• External web-mail retrieval service - This type of service is available
free on the Internet [23]. It allows users to retrieve e-mail from any
POP3 accounts from the web using the user’s e-mail address and
password entries. If the e-mail and/or password is incorrect, it will
generate an error message. IMAS would then provide feedback to
the user. “Mail2web,” [24] is a free service available on the Internet
that verifies the e-mail address and password. Furthermore, it
allows for both secure and non-secure log-in.

33

(2) IM Name and IM Provider Validation Check. This

check leverages the search feature offered by IM client software. This feature

provides direct access to the provider’s database. Before IMAS can use this

feature, it must download the IM client software from IM providers e.g., MSN,

ICQ, Yahoo Messenger, Skype or Jabber into IMAS. IMAS will have a registered

account for each IM provider utilized by the various users. IMAS can then use the

search engine of the IM-client software to verify the user’s username. If the

username is valid, IMAS will add this username to the contact list of the IM client

software in IMAS. If the user’s entry is invalid, the search will return a null result.

IMAS can then provide feedback to the user and request a re-verification.

However, a drawback is that the search might also return a

list of other users sharing the same username. To refine the search, additional

fields such as country and e-mail address are required. In the current IMAS

implementation, the menu only allows the user to input the IM screen-name and

the IM provider. This limitation prevents the system from verifying the entry

effectively. In addition, IMAS is inflexible as it only allows the user to input one IM

account. Nowadays, users typically have more than one IM account. Users may

need various IM accounts in order to communicate with different groups of

people, e.g., business associates, friends and family; or for different

environments. Some IM services are blocked in certain environments.

Hence, to resolve these issues, the registration menu needs

to be flexible. It must allow users to add/select more than one IM account. Each

account should have additional fields to provide a better granularity search.

Although IM service provides a convenient and almost real-time alert notification

to reach the user, it should be noted that some IM software is insecure.

Messages are transmitted in clear text and can be read by anyone with the

sniffing tools and network access. In addition, messages are vulnerable during

processing on the server. Messages can also be intercepted, altered and re-

transmitted. Therefore, it is advisable not to send any confidential message or

alerts via this mode.

34

Fortunately, many popular IM providers (AOL, ICQ, MSN

messenger and Yahoo messenger), recognize this drawback and have since

launched a secure-version client software. This software encrypts the message

between the users to promote a more secure session. For better management of

different IM-client-software installed on the system, it is recommended that IMAS

uses unified IM software. This software collates all users’ contacts from the

various IM providers and presents it as a single IM view. Miranda, is an IM

software that offers both secure and normal messaging services. [25, 26]

(3) Cell Phone Number and Service Provider Check.

There are multiple web sites that provide free services that allow individuals to

verify the service provider for a given cell phone number. One such service is the

phone number analysis service provided by International Number Plans [27]. It

accepts a cell phone number and then returns a service provider. If the service

provider returned does not match the entry provided, IMAS will provide feedback

to the user.

However, most of these services do not support local

number portability (LNP) at this moment because LNP database is not available

to the public. LNP is a service that allows users to switch service provider(s)

while keeping the original number. In this case, the service will not provide a

correct verification. A workaround for a ported cell phone number is for IMAS to

send a verification SMS to the user. If he/she receives the SMS, then the service

provider is a correct entry. If they do not receive it, they must check their entry

again to ensure they input the correct service provider.

(4) Cell Phone Model Validation Check. The model of a

cell phone can be validated by checking the unique identification number

embedded on the cell phone (by the manufacturer). The International Mobile

Equipment Identity (IMEI) embedded on every GSM/UMTS cell phone is a 15 or

17 digit number that provides information on the origin, model, and serial number

of the device. It is usually found printed on the phone underneath the battery.

Alternatively, it can be found by dialing the sequence *#06# on the cell phone

35

[28]. The mobile equipment identifier (MEID), found on CDMA cell phones, is 56-

bit long (14 hex or 18 decimal digits), containing the 8-bit regional code (RR), a

24-bit manufacturer code, and a 24-bit manufacturer-assigned serial number [29].

(5) To Validate GSM Cell Phones. IMAS could leverage

an online service, the “IMEI number analysis” offered by International Numbering

Plans. This service analyzes the IMEI and identifies the model and issuing

authority [30]. Figure 14 shows the output of this service. For CDMA phones, as

MEID does not contain information on the model, it is impossible to identify the

model. The only way to identify the model is to query the manufacturer’s

database which might not be available. Nevertheless, IMAS could use the serial

number and verify the manufacturer with the Telecommunication Industry

Association (TIA) website [31]. TIA is responsible for managing and issuing

MEIDs to manufacturers. If the selected input model does not match the

manufacturer, IMAS will provide feedback to the user for re-verification.

Figure 14. IMEI analysis output

36

c. How to Correct Data-Type Errors
The data-type errors introduced by attackers are often attacks that

exploit applications’ failure to validate input entry. These errors could lead to

system crashes, theft of information or corruption of data. This vulnerability can

be corrected or mitigated by data-type validation methods. These methods rely

on three data-type validation models; (1) Accept only known valid data, (2) Reject

known bad data, and (3) Sanitize bad data. These three data-type models check

on (1) data type, (2) syntax and (3) length of data entry [32]. They are listed as

follows:

• Accept only known valid data model – This is the preferred
model to validate data whereby applications should only accept
input that is known to be safe and expected. For example, a valid
username (defined as ASCII A-Z and 0-9) should be type-checked
as a string and must be comprised of A-Z and 0-9. It must also be
bounded by the valid length of the application.

• Reject known bad data model – This model relies on the
application knowing about specific malicious payloads, e.g.,
specimens or signatures. Although this strategy can limit exposure,
it is difficult for any application to maintain an updated database of
web applications against signatures because signatures change
very frequently.

• Sanitize bad data model – This model attempts to make bad data
harmless, i.e., converting bad data into a common character set. It
is effective against bad data input but is extremely difficult to
implement. Hence, it should only be used as a second line of
defense.

• This part of the section looks at several well-known web attacks
that leverage applications’ failure to validate input for exploitation. It
will show how these attacks are prevented by validation and other
techniques.

• Cross Site Scripting (XSS) – This type of attack lies in the
vulnerability of the application’s script. Often, the victim is tricked
into making a specific and carefully crafted HTTP request using
traps. These traps may masquerade in the form of a (1) link in a
HTML aware e-mail, (2) web based bulletin board or (3) link or
image embedded in a malicious web site. The traps will then direct
the malicious request to the web server. Here, the script will read
just part of the HTTP request and echo it back in full or in part,
without first sanitizing it. It does not ensure that the entry is free
from any java script code or HTML tags.

37

Hence, if the request contains a java script, it will be echoed back

to the user as a response page. The user’s browser will interpret it as a java

script used by the application to verify its inputs. It will then allow the script to

access the cookies on the client end. This exposure of all cookies’ allows for

information to be collected by the attacker. As most

identification/authentication/authorization information is maintained inside the

web applications cookies, this will allow the attacker to impersonate the users

and access their accounts, which is disastrous [33].

d. Mitigation Techniques
There are various mitigation techniques available to prevent XSS.

Common techniques are as follows.

• Perform input filtering/data sanitation that looks into the user’s
inputs such as parameters and HTTP headers and filter against
HTML tags including java script. The input includes all possible
sources, e.g., query parameters, body parameters of POST request
and HTTP headers.

• Perform correct encoding of dynamic output data. This can prevent
malicious scripts from being passed to the user. The application
could make an explicit decision to encode un-trusted data and
leave trusted data untouched, thus preserving the integrity of the
mark-up content.

• Enforce fixed character set on web pages and ensure that the data
inserted by the system is free from byte sequences containing
special characters such as “<”. Web pages must be configured to
inform the browser of what character set to use when submitting
the form data back to the server. The web pages must also be
configured to inform the servers’ applications as to what character
set they need to use internally. This deters any unspecified
character-encoding entry that might be misinterpreted by the web
server resulting in a probable attack.

• Install a third party application firewall, which intercepts XSS
attacks and blocks them before they reach the web server and
script. The application firewall validates and inspects the data
against various HTML tag patterns and rejects the request if there
are any matches. Thus, it ensures that the malicious input does not
reach the server and script.

• Run an automated web application vulnerability tool to inspect the
web site and launch all variants of attacks it recognizes against all
scripts. The attacks include trying different parameters, headers

38

and paths. Each input to the application e.g., parameters of all
scripts, HTTP headers, and paths, is checked with as many
variations as possible. If the response page contains a java script
code that the browser can execute, then an XSS vulnerability is
exposed.
e. Direct SQL Injection
This type of attack occurs when the application does not validate

user entry. This allows attackers to make direct database calls into the database.

Attackers will typically add a malicious database function in the request and

cause the database to process and execute their desired function. The

consequences can be devastating, e.g., the attacker can change the

administrative password of the system or the value of money deposited into his

bank account. Thus, it can be seen that a poorly designed web application

without (or with minimum) a validation function can allow an attacker to retrieve

and place data in any system at will.

Direct SQL injection can be used to (1) change SQL values, (2)

concatenate SQL statements, (3) add function calls and stored-procedures to a

statement and, (4) typecast and concatenate retrieved data. The following

exemplifies how each of these attacks can be executed in the request: [34]

• Changing SQL Values
 UPDATE usertable SET pwd='$INPUT[pwd]' WHERE uid='$INPUT[uid]';

 Malicious HTTP request
 http://www.none.to/script?pwd=ngomo&uid=1'+or+uid+like'%25admin%25';--%00

• Concatenating SQL Statements
 SELECT id,name FROM products WHERE id LIKE '%$INPUT[prod]%';

 Malicious HTTP request
 http://www.none.to/script?0';insert+into+pg_shadow+usename+values+('hoschi')

• Adding function calls and stored-procedures to a star statement
 SELECT id,name FROM products WHERE id LIKE '%$INPUT[prod]%';

 Malicious HTTP request
 http://www.none.to/script?0';EXEC+master..xp_cmdshell(cmd.exe+/c)

39

• Typecast and concatenate retrieved data
SELECT id,t_nr,x_nr,i_name,last_update,size FROM p_table WHERE size =

'$INPUT[size]';

 Malicious HTTP request
http://www.none.to/script?size=0'+union+select+'1','1','1',concat(uname||'-

'||passwd)+as+i_name+'1'+'1'+from+usertable+where+uname+like+'25

f. Mitigation Techniques
There are various mitigation techniques available to prevent Direct

SQL injection. Two techniques are as follows:

• Perform in-house filtering that looks at the user’s input for SQL
commands. SQL queries should be built from data values and
never from other SQL queries or parts thereof. Therefore, the
filtering will remove special characters used in SQL statements,
e.g., “+”, “,”, “’” (single quote) and “=”. However, this approach will
not be able to stop all SQL injection attacks. It can be difficult to
implement if the input filtering algorithm has to decide whether the
data, that contains special characters, is destined to become part of
a SQL query. In addition, as different databases handle special
characters differently, the filtering algorithm has to know which
database this query might run against and filter off these special
characters.

• Construct all queries with prepared statements and/or
parameterized stored procedures – A prepared statement or
parameterized stored procedure is one that encapsulates variables
and will escape/not encapsulate special characters within them
automatically. Therefore, any value for the parameters that contain
SQL commands will be interpreted as special characters and will be
rejected by the statement.
These two techniques complement each other and provide the

defense in depth needed to mitigate SQL injection attacks.

(1) Direct Operating System (OS) Commands Attack.

This type of attack focuses on the system commands that are available to almost

every programming and scripting language. These languages use system

commands to utilize the services provided by the OS. File-handling, sending e-

mail or invoking the OS tools are some common usage commands by web

applications. However, if the input entry is not validated, the attack will result an

(1) alteration of system commands, (2) alteration of parameters passed to

40

system commands, (3) execution of additional commands and OS command line

tools or (4) execution of additional commands within the executed command. All

of these actions could result in the corruption of data or loss of service. PHP is

used to develop applications in IMAS. It is advisable to avoid using the following

commands [35]:

• Require ()

• Include ()

• Eval()

• Preg_replace() (with /e modifier)

• Exec()

• Passthru()

• ‘’ (backticks)
One common mitigation technique used is:

• Perform an in-house filtering that looks into the user’s input for OS
commands. The set of commands to filter depends on the scripting
or programming language.

(2) Path Traversal Attack. This attack exploits the file

system of the web server commonly used as a storage repository by many web

applications. The file system stores their information, which includes images and

static HTML pages. Web servers are easily accessible by anybody who has

access to the Internet. An attacker can easily launch an attack on the web server

by constructing a malicious request using meta-characters such as “../.” These

meta-characters can be used to describe the path of a location or to return data

about the physical file location if they are not properly checked or validated. This

vulnerability is referred to as “file disclosure vulnerability.” The attacker may also

combine this technique with direct OS command attack or direct SQL injection

attack to launch a specially crafted URL to path traversal attack. This special

attack allows the attacker to traverse system directories and execute system

commands. [36]

41

There are two mitigation techniques available to prevent path

traversal attack. They are as follows:

• Use path normalization provided by the development language e.g.,
PHP, Perl.

• Validate the input entry to remove any offending path strings such
as “../” as well as their Unicode variants from the system input.

(3) Null Bytes Attack. This type of attack exploits the

vulnerability of the underlying programming language that treats null byte “\0” as

the termination of a string. If the input is not validated, a malicious entry

containing the null byte will be accepted as a valid entry by the application. This,

in turn, will be passed to the underlying applications, which interpret it differently.

For example, “AAA\0BBB” is accepted by the applications as a valid entry but is

interpreted as “AAA” by the lower-layer applications. This attack can be used to

(1) disclose physical paths, files and OS-information, (2) truncate strings, (3)

bypass validity checks that look for sub-strings in parameters and (4) cut off

strings passed to SQL queries.

Perl, Java and PHP are some of the most popular scripting

and programming languages that have this vulnerability. Since PHP is used to

develop applications in IMAS, it is pertinent to rectify or mitigate this vulnerability.

[37]

One common mitigation technique used is:

• Validate all input entries by checking on all null bytes before
passing to underlying applications.

(4) Parameter Manipulation Attack. This type of attack

changes the value of parameters sent from the user’s browser to the web

application to perform a task that is not originally intended. Under this form of

attack, the attacker will always target parameters originated from the (1) cookies,

(2) form fields, (3) URL query strings or (4) HTTP headers. [38]

(5) Cookies Manipulation Attack. Cookies have always

been the preferred method to maintain state in a stateless HTTP protocol

because they are a convenient mechanism to store information. Furthermore,

42

they are used by many web applications to store user preference and session

tokens. However, the value could easily be changed by a user and sent to the

server with the URL request regardless if it is a persistent cookie, non-persistent

cookie, secure cookie or insecure cookie.

Persistent cookies enable a web application to remember

the user by establishing an information file on the user’s system. A non-persistent

cookie is stored in the RAM on the user’s system and is destroyed when the

browser is closed. A secure cookie is used in secure communication sessions

only, e.g., HTTPS. It provides three types of services: (1) authentication, (2)

integrity and (3) confidentiality. An insecure cookie is used to manage session

cookies and can be used in both secure (HTTPS) and normal connections

(HTTP).

In addition, most cookies do not offer any encryption

protection. This process creates an opportunity for any attacker to modify the

cookie content at will. Typically, most attackers will launch this type of attack on

session tokens that make authorization decisions. [39]

There are various mitigation techniques available to prevent

a cookies manipulation attack. Three techniques used are as follows:

• The most reliable way to ensure that the data is returned un-
modified is to implement a session token. A session token is used
to associate the session to the userid. At the server-end, a session
table is set up to map the user’s session to the user’s data
variables in the cache/database. When an application needs to
check a user’s property, it will check the userid with its session
table and refer to the user’s data variables in the cache/database.

• Build detection hooks to evaluate the cookie for any infeasible
combinations that would indicate tampering, e.g., a “detection” flag
embedded in the cookie.

• Encrypt the cookie to prevent it from being tampered. The cookie
should be hashed and the hash is compared when it is returned to
the application or it could be encrypted using symmetric encryption.
However, the latter approach will not work if the system is
penetrated or compromised. In this situation, a new key will need to
be generated.

43

(6) HTML Form Field Manipulation Attack. Most of the

web applications used provide a mechanism that allows users to input

information. This information is often stored as form field values and sent to the

web application as an HTTP request (GET or POST). HTML can also store field

values as hidden fields, which are not presented to the screen by the browser.

These hidden fields are collected and submitted as parameters during form

submission. However, these form fields, even though they are pre-selected (such

as drop-down/checkboxes, free form or hidden), can easily be manipulated by an

attacker. The attacker can save the source of the web page, edit it and reload

the page in the web browser before submitting the value back to the server. This

poses a serious threat as the attacker may change many form fields, e.g., the

value, the maximum length tag of the input entry and the visibility of the display.

This results in changing the original and truthful values of the form fields.[40]

There are various mitigation techniques available to prevent

HTML form field manipulation attack. Two techniques used are as follows:

• Instead of using hidden form fields that reference the properties of
a field, which is subjected to changes, it is advisable to use session
token to reference properties stored in a server-side cache. Thus,
when an application needs to check a user property, it checks the
session cookie with its session table and points to the user’s data
variable in the cache or database.

• Detect the changes in HTML form field manipulation - In this
approach, the name and value pair of the hidden field in the form is
concatenated together into a single string. A secret key is
appended to this concatenated string to form what is known as an
outgoing form message (OFM). The secret key will not be sent with
the form but is kept at the server-end. The OFM is then hashed to
generate an outgoing form digest (OFD) that is added to the form
as an additional hidden field. When the form is submitted back to
the server, the incoming name and value pair are concatenated
along with the secret key into an incoming form message (IFM).
Next, a hash is computed to generate the incoming form digest
(IFD). If the IFD does not match the OFD that was sent along with
the form, then the hidden field is detected as altered and the
applications can choose to ignore this submission. This same
technique can be used to prevent URL parameter tampering as
seen in the next section.

44

(7) URL Manipulation Attack. In many web applications,

HTML forms are normally submitted using one of two methods: GET or POST. In

the GET method, all the element names and their values will appear in the query

string of the next URL the user sees. Tampering with query strings is very easy;

all the user has to do is look at the address bar of the web browser and modify

the values of the URL. For instance, this attack can be carried out by a user

requesting the server credit $100.00 into his account numbered 12345 instead of

a debit transaction of $100.00. This simple manipulation technique can have

devastating effects on financial institutions. [41] An example of this command is

as follows:

http://www.victim.com/example?accountnumber=12345&debitamount=100

http://www.victim.com/example?accountnumber=12345&creditamount=100

Unfortunately, HTML form is not the only mechanism that

has these vulnerabilities. Almost all navigation done on the Internet is via

hyperlinks. When a user clicks on a hyperlink to navigate from one site to the

other, or within an application, he is sending a GET request. This GET request

has a query string with parameters similar to the form. This allows any attacker to

look at the URL window of the browser and change the parameters.

There are several techniques used to solve URL

manipulation problems and each technique can be used in different situations.

The best solution is to avoid putting parameters into a query string (or hidden

form string).

• POST instead of the GET method - The POST method puts
parameters to be passed in the body of the request which is not
visible within the URL. This eliminates the opportunity for the user
to make changes to the URL so that it may bypass the application.
However, it does not prevent advanced hackers that typically have
the tools from seeing and manipulating the POST parameters.

• Encrypting or signing the entire query string or all hidden form field
values - This technique prevents a user from setting the value or
seeing the value. This technique is applicable to situations where
the parameter value is confidential such as a password.

45

• Replace variables in URL with page token – This technique
replaces all variables in the URL with a page token. A page token is
a random number or “nonce” that is only valid with a particular page.
It is not valid in another page. At the server end, a page table is
created to map the variables to the page token. Thus, whenever a
request is made by the user and sent to the application, the
application will check the value of the page token. If the page token
does not match the value in the table, it indicates that the user has
manipulated the variable and the request is rejected. In addition,
because the variable is now a random number, the user will not
know the actual parameter, therefore, deterring the user from
making any changes.

• Hashing the value of the URL query string (or hidden form fields)
and append it to the URL – This approach can detect manipulations.
If the URL value is changed, the hash value will not match and the
application is able to detect it. However, this method does not
prevent the user from seeing a value; it only prevents the attacker
from changing the value.

(8) HTTP Header. HTTP headers are control information

passed from web clients to web servers based on HTTP requests and from web

servers to HTTP clients based on HTTP responses. These headers are

sometimes used by web applications to determine the URL of the web page from

which the request was originated, e.g., a Referer header. This check is to prevent

attackers from saving the web pages, modifying them and re-posting them from

their own computer. Although most web browsers do not allow header

modification, an attacker is still able to modify the header with his own script or

by using freely available proxies that allow easy modification. This will lead to

SQL injection or a falsified URL. [42]

There are various mitigation techniques available to prevent

HTTP header attack. One technique used is as follows:

• Sign and preferably encrypt the header, such as in the case of
cookies. However, it is key to note that a Referer header should
never be used as any security decision.

Two well known attacks include (1) HTTP request smuggling

(HRS) and (2) HTTP response splitting (HRSP). These attacks exploit the web

server and intermediate devices such as a (1) cache server, (2) proxy server or

46

(3) web application firewall. Failures to properly handle malformed inbound

HTTP requests, i.e., they read the request differently, allows the attacker to

achieve malicious intent.

(9) HTTP Request Smuggling Attack. In this attack, the

attacker sends multiple specially crafted HTTP requests that cause the two

attacked entities (web server and intermediate devices) to see different sets of

requests. This type of attack allows the attacker to smuggle a request to one

device without the other device being aware of it. Various types of smuggling

attacks are: (1) bypassing the application firewall protection, (2) web cache

poisoning, (3) session hijacking and (4) cross site attacking. Noteworthy, the

most vital attack is the attacker’s ability to bypass the application firewall

protection which is deployed in many web sites’ protections. In the web cache

poisoning attack, the smuggled request tricks the cache server into

unintentionally associating a URL to another URL’s page (content) and directs

the content for the URL. In the web application firewall attack, the smuggled

request can be a worm (like Nimda or Code Red) or buffer overflow attack,

targeting the server. In this type of attack, the attacker can manipulate the web

server’s request/response sequencing, allowing for credential hijacking and other

malicious outcomes, making it one of the most severe attacks. [43]

There are various mitigation techniques available to prevent

HRS attack. These techniques are as follows:

• Application firewall - Although this form of attack can bypass
application firewalls, an application firewall is still recommended to
be installed to detect and deter this attack in deployment where
both cache servers and web servers are deployed. To ensure the
firewall is not vulnerable to this form of attack, it needs to be
assured that it is secure against this type of attack either through
server patches or algorithm.

• Deploy a web server that employs a stricter HTTP procedure such
as an Apache server.

• Allow only secure communications, i.e., SSL communication
(HTTPS instead HTTP) and terminate the client session after each
request or switch all pages to non-cacheable. This process will
prevent poisoning in the cache-web server situation.

47

(10) HTTP Response Splitting Attack. This type of attack

exploits the application’s failure to reject illegal user input; input that contains

malicious or unexpected characters, specifically the CR (carriage return) and LF

(line-feed) characters. Here, the attacker sends two requests through the

intermediate device. The first request is a single specially crafted request that

forces the web server to generate an output stream composed of two responses.

These two responses are then interpreted by the intermediate device as two

HTTP responses instead of one response, as done in the normal case. The

second request would typically ask for some resource on the web server.

However, the second request would be matched by the intermediate device to

the second HTTP request response, which is fully controlled by the attacker. The

attacker, therefore, tricks the intermediate device into believing the server

resource is the second HTTP response, while it is, in fact, data forged by the

attacker through the web server in the first request.

This form of attack can lead to proxy cache poisoning known

as “classic defacement” where the user is directed to a web site controlled by the

attacker. Furthermore, it can result in browser cache poisoning where the poison

page stays in the cache, waiting for the user to load it. Lastly, this form of attack

can be used to attack a script created to handle HTTP errors or to defeat a

character-based input filter. [44]

There are various mitigation techniques available to prevent

HRSP attack. These techniques are as follows:

• Perform input filtering that validates all input entries and removes
the CRs and LFs (and all other hazardous characters) before
embedding data into any HTTP response headers, particularly
when setting the cookies and re-directing. It is possible to use third
party tools (e.g., Sanctum’s Appshield and AppScan) to defend
against CR/LF injection and to test for the existence of holes before
application deployment.

• Always patch the application engine to ensure it is up-to-date.

• Ensure the application is accessed through a unique IP address
(i.e., the same IP address is not used for other applications, as it is
with virtual hosting).

48

4. Database Process
Once the data has been validated and sanitized by the applications, the

data will be inserted into the database for storage. The stored data can also be

retrieved from the database for output response.

a. Vulnerability
Although the database is physically separated from the web and

application server and protected by ACLs and other security mechanisms, e.g

firewalls, the data is still subjected to subversion if the database system is

compromised and the data is being snooped on the Internet. Hence, besides

physical access controls, other security mechanisms must be in place to encrypt

the data. These security measures must be in place whether data are in the

database or in transit from the application server to the database. The data will

be viewed as “garbage” by others if it is taken out of the context of the database

or if it is snooped by others while it is in transit from the application server to the

database server.

b. How to Protect the Data
MySQL, the database used by IMAS, offers several methods to

protect the data in transit or in storage. IMAS must use these methods to protect

the data. The methods are as follows.

(1) Data Encryption into Database. MySQL provides

several methods to encrypt the data in the database. Among these methods, one

method is recommended because of its strong encryption algorithms, the

Advanced Encryption Standard (AES) encryption and decryption. It is

recommended that all of the data or at a minimum, the most sensitive data, e.g.,

passwords and cell phones/models in IMAS be encrypted using these methods.

[45]

49

• AES_ENCRYPT () and AES_DECRYPT () - these functions
encrypt and decrypt data using the AES algorithm. It is encoded
with a 128-bit key length, but can be encoded with a 256-bit key
length by modifying the source. By far, AES_ENCRYPT() and
AES_DECRYPT() are considered to be the most cryptographically
secure encryption functions currently available in MySQL. To store
the data in encrypted form inside the database, the user uses the
following command:

INSERT INTO t VALUES (1,AES_ENCRYPT('text','password'));

(2) Hashing. MySQL also supports several methods to

generate hashes for its data to be stored inside the database. These hash-

generating functions are based on well known algorithms e.g., SHA (secure hash

algorithm) or variant SHA1 and MD5 (message digest 5). To protect the integrity

of the data, especially sensitive data (passwords, cell phone numbers or cell

phone models, and encryption keys), it is recommended to hash these sensitive

data and store the hashes in a different storage area. The storage area needs to

be physically separated from the database so that it will not be compromised/

tampered if the database system is compromised. A script should be written to

periodically hash these sensitive data in the database. These hashes should then

be checked against the stored-away-hashes to ensure none of the data was

tampered with or modified.

• SHA() or SHA1() – this function calculates and computes a SHA-
1 160-bit checksum for a given input based on SHA. SHA1() or
SHA() is considered cryptographically more secure than MD5().
The following command shows how to hash a string using SHA1.

SELECT SHA1(‘password’)

• MD5 () – this function calculates and computes a MD5 128-bit

checksum for a given input. The following command shows how to
hash a string using MD5.

SELECT MD5 (‘password’)

50

(3) Secure Connection between Database and Client.

MySQL supports a secure connection using a SSL between the database server

and its clients. In the context of this thesis, it refers to the application server

which sends the validated and sanitized data to the database. This prevents any

attacker snooping on the network from seeing the data in clear-text. The secure

connections can be set up using the bundled yaSSL that comes with MySQL or

OpenSSL. OpenSSL is open-source software that generates digital certificates

and the keys (public and private) to support SSL. The secure connections in

MySQL are based on OpenSSL application interface (API) and are available

through MySQL C API. [46]

(4) Data Backup. Data backup is a critical process that

protects data from any data loss events. IMAS must backup the database (a full

backup or an incremental backup) periodically for speedy recovery against server

crash, power failure, file system crash, hardware failure or system exploitation.

MySQL offers both full and incremental backup options. A user can perform a

one-time full-backup to capture the entire database and then use incremental

backups to capture subsequent changes. This backup plan optimizes the long

(full backup) and short (incremental) backup times for the backup operation. In

addition, MySQL allows a user to recover data by specifying the time (starting

time or stopping time) or position (in the database) of recovery to recover the

data. MySQL also offers error-check capability on the tables and table recovery

capability that handles data corruption issues. [47]

To better safeguard the data, all backups should be copied

to a media that is not housed in the same server as the database. Additionally, it

should be kept in a safe place, e.g., tape or DVD in a safe or off-site.

5. Session Login and Profile Updates
After the user has completed the registration, the user will then log in

again to either re-confirm the account or make changes to the profile. Before

being allowed access into the system and make any changes, it is necessary to

login and authenticate to the system with the username and password. As

mentioned earlier, the IMAS system will implement either a one-factor I&A

51

(identification and authentication) or a two factor I&A. A one-factor I&A uses only

the IMAS username and password. However, the two-factor I&A requires the

user to authenticate using the CAC card (containing the user’s private key) prior

to authentication to the IMAS system. Upon successful authentication, the

system will create a session and issue a session token to the user. This session

token will allow the system to associate the identity of the user to the application

for accountability. Furthermore, it provides the context in which all their

interactions with the server will be evaluated. [48]

Session tokens are often stored in cookies (created by the web

application) inside the user’s stations. However, they may also be stored in a

static URL, dynamically written URL, hidden in the HTML of a web page or a

combination of these methods. Regardless of the form used, a secure session

management scheme must be implemented because a poorly designed/

implemented scheme can lead to compromised user accounts. The following

section discusses how to implement a secure session management scheme.

a. Secure Authentication
Authentication is the first stage in creating a session. This stage is

especially prone to security attacks because once a session is created; all further

actions associated with this “legal” session need no further authentication. Hence,

a strong authentication mechanism is required. To prevent any subversion, all

authentication information should always be passed over a secure medium. In

the context of this thesis, the secure medium is established over SSL. In addition,

to increase the resistance against dictionary and brute force attack, a well-built

password (requiring a minimum number of characters, consisting of a

combination of letters, numbers and other special characters), is needed.

Authentication is also subject to severe enumeration attacks from

attackers in the hope of accessing the system. Therefore, it is important to

ensure the system contains a delay to slow down the enumeration. A threshold

should also be set to count the multiple failed authentications for every account in

the system so that if the threshold is reached, a warning is generated. This will

prompt the user to take necessary actions.

52

Both of these techniques serve as a measure to monitor

consecutive attempts and number of failed attempts over a specified period of

time.

b. Session Maintenance
Once the user has successfully authenticated, all actions taken will

not be authenticated and will only be identified by a session token/identifier. Thus,

it is crucial to create a secure session identifier that is user unique, non-

predictable, and resistant to reverse-engineering. The identifier must be

cryptographically strong, signed and time-stamped. Additionally, the

token/identifier should always be created from a trusted random generator, e.g.,

Yarrow, EGADS, and encrypted using a well known encryption algorithm, e.g.,

AES or 3DES. To further enhance the security, all session tokens should be

associated with an HTTP instance to prevent hijacking and replay attacks. One

such mechanism involves using page tokens, which are unique for any

generated page and can be tied to session tokens on the servers.

Hijacking an existing session is a common technique employed by

attackers. To prevent this form of attack when the user switches from secure to

non-secure pages, the system should always use a different session id. If the

common session id must be used for secure and non-secure pages, then the

secure pages must always authenticate the user before negotiating new keys.

This step will lessen the vulnerability of an attacker using the hijacked session

token to access a secure page. If the user is not re-authenticated, the attacker

with the hijacked session token/id, could access the secure page and obtain

sensitive information. This leads to a confidentiality breach.

Other measures include using long key space for token/identifier

creation and managing the time-window of the session.

c. Session Management
Session termination is an important aspect of session management.

Any unattended sessions left open over a period of time open a security gap for

potential breaches. Similarly, any non-terminated sessions permit attacker to

53

gain access to specific sessions which can lead to identity theft. Hence, it is vital

to reduce the vulnerability window of the user(s) session. The session should be

terminated in the following conditions:

• Inactive session – A session that has been inactive for a
predetermined period of time should be terminated to reduce the
window of attack. Typically, this time ranges from 15-30 minutes,
depending on the preference of the system.

• Long session – To prevent session hijacking and a brute force
attack on existing active session(s), the active session will be
terminated after it has reached a prefixed maximum time.
Thereafter, the user is required to re-authenticate so that a new
session token/id is created. This reduces the window of attack on a
replay attack.

• Security Error Logoff Session – Any security error encountered in
the application should result in an immediate termination of the
session. This prevents any orphaned session from being taken over
by an attacker.

• Logoff/Logout Session – A session should always enable the user
to logoff/logout the session as the most secure section.

• In addition to a session termination scheme, other session
management schemes include [49]:

• Session Forging/Brute Force Detection (“booby trap” session
tokens) – This scheme measures against a brute force attack
where the attacker tries hundreds to thousands of session tokens
embedded in a legitimate URL or cookie. These tokens are never
actually assigned to the users but reside on the server end. They
will detect this anomaly and ban the originating IP address or lock
out the account.

• Session Re-Authentication – This scheme prompts the user for a
re-authentication and is applicable when a critical user action such
as a money transfer or the purchase of a big-ticket item has to be
made. In the IMAS context, re-authentication may be activated if
the user tries to change the e-mail address or cell phone number
that impacts the delivery of the alerts.

• Session Tokens on Logout – These days, it is common practice for
users on the move to use widespread terminals in Internet kiosks,
e.g., airports and cybercafés, to access the Internet. This provides
a new set of risks because a browser only removes session
cookies when a browser thread is closed and most Internet kiosks

54

maintain the same browser and do not close it. Thus, it is
necessary to overwrite session cookies when the user logs off the
application.

d. User Profile Update
Once the user logs into IMAS and is issued a session token/id, a

default calendar view of the current week will be presented to the user. An

example of this is shown in Figure 15.

Figure 15. Calendar view

From this point, the user can select a date and enter the following

information in the event entry menu:

• Description of event

• Duration of event

55

• Context of event

• Types of alerts they prefer
Figure 16 illustrates this process.

Figure 16. Event Entry Menu

When the user submits preferences, IMAS will perform the data-

correction and data-type check. In the data-correction check, IMAS will verify two

fields: (1) date and (2) context along with type of alerts, to prevent user mistakes.

The date entered must not be earlier than the current date because

any event before the present date and time is obsolete. Additionally, the date

must not be a date too distant (one year later) as the system does not recognize

this as a realistic event. The context selection will determine the type of alerts.

Thus, a binding algorithm should be built into the software to ensure the alert

types correspond to the context selected. The data type validation shall follow the

recommendations made in earlier section.

56

D. ADDITIONAL SECURITY MEASURES
In addition to the recommendations already discussed, there are several

other measures that need to be implemented to strengthen the security of the

web applications. This section covers some of these measures.

1. Privacy Consideration
In some countries, it is mandated by law to safeguard a user’s privacy.

Hence, systems that deal with private and sensitive information must take

additional steps to ensure a user’s privacy is maintained. The following list

provides recommendations to protect a user’s privacy [50]:

a. Warnings
The system should warn users of the danger of sharing common

PCs such as those in Internet kiosks or libraries. Warnings, at a minimum, should

include:

• Do not access private data from common PCs because of the
possibility of pages being retained in the browser cache

• Recommendations/steps to clear the cache in the browser after
accessing private data

• Fact that “temp” files can still remain in the PC after use

• Fact that the proxy server and other LAN users may be able to
intercept traffic
b. Page Parameters
The system needs to ensure that personal data is displayed only

when necessary. All private data must be masked or partially-masked to prevent

people from seeing it. In addition, if possible, the data should not be stored in the

cache of the PC. All data should be cleared and removed when the user ends the

session. This process can be achieved by setting the (1) expire time, (2) no-

cache tags (headers) and (3) no-pragma-cache tags (headers), of the web pages

when designing the pages. [51]

2. Event Logging
Event logging is essential to providing key security information about a

web application and its associated processes and technologies. It captures the

following crucial information:

57

• Suspicious behavior taking place in the system that can be fed to
an intrusion detection system in real-time for root-cause analysis.

• User’s actions to provide individual accountability in the web
application system.

• Events that are helpful for the reconstruction of events after a
problem has occurred, be it security related or not. Event
reconstruction permits system administrators or forensic
investigators to determine the extent of an intruder’s activities and
expedite the recovery process.

Failure to enable proper event logging mechanisms in the web

applications may result in the system being unable to detect unauthorized access

attempts. Hence, it is strongly recommended that logging be enabled in IMAS.

3. Compartmentalization of Data
Data is the most critical part of any system and information leakage is

deemed disastrous. Hence, sufficient effort and measures must be taken to

protect data.

One such approach is accomplished through compartmentalization.

Typically, data can be decomposed as sensitive (private) and non-sensitive

(public). The first thing a programmer needs to do in the design of the IMAS

system is to identify the sensitivity or classification of the data so that it is

possible to separate them either physically (separate hard-drive) or logically (in

different folders). Putting both sensitive and non-sensitive data together, creates

a higher risk of compromising the confidentiality of the data, even though access

control might be in place on each file. This is because an authorized person who

has access to the directory and/or files could work around such controls and gain

access to the files he/she is not authorized.

In addition, by compartmentalizing the data, it offers an additional layer of

defense and the flexibility to better control access to the data. The data entry

points,, points where users access the data from the outside, can also be

identified and various access control mechanisms, such as mandatory access

control (MAC), discretionary access control (DAC) or even role-based access

control (RBAC), can be implemented. This strengthens the access control to the

data.

58

MAC is implemented by the system based on an access policy

established by the data owner. It will decide on the resources or files the users

are allowed to access and what privileges they have based on the login

credentials they provide.

DAC is an access policy determined by the owner of the file or other

resources. The owner decides who is allowed access to the file and what type of

privileges.

RBAC is an access policy based on the roles the person is tasked to

perform. The permissions and privileges are tied directly to the role.

By compartmentalizing, the system can encrypt and hash the data to

provide an additional level of confidentiality and integrity protection. Thus, it is

recommended that IMAS compartmentalize the data.

4. Encryption
Encryption is a key aspect in providing protection to the web applications.

It protects the data from being modified and viewed by any un-authorized user(s).

However, it should be noted that there are many types of encryptions, each

serving a specific layer. SSL is a form of encryption that only encrypts data in the

transport layer, protecting the data in transit. It is not specific to the application

and will not provide protection to the application layer. Thus, other types of

encryption are needed to encrypt the specific fields in the HTML forms and mask

off the links within the pages. It is also necessary to obscure the content and

structure of the application to avoid probing. All fields and links used by the

server should also be signed, encrypted or compared with values stored in the

backend to avoid/detect manipulation. Likewise, data stored in the database

should be encrypted and hashes generated to protect the data and detect un-

authorized modification.

5. Caching
Caching in the form of a cache server is commonly used in many web

applications. It is used to enhance performance because it buffers/caches the

most frequently-used content and serves it on behalf of the web server. This

59

eliminates the need to request it from the web server on every request. However,

this poses a security hazard because if any content pages, i.e., non-multimedia,

are put on external unprotected cache servers, these pages (which are part of

the application) will expose the application to changes in the pages. If this occurs,

it will cause a loss of control over the application flow and increase the

complexity in the security design.

In addition, to prevent private records from remaining on the user’s

computers, especially in a common-use terminal, after the web page is served, it

is recommended to use a “no-cache” HTTP header on the web page. Removal of

the page by setting this indicator not only adds to the obscurity, but also protects

the user’s private data from being copied or manipulated.

6. Production Site
The production server used to host the web application should always be

separated from the internal servers, servers that belong to the Intranet. This

process is needed so that the impact on the servers can be contained.

Additionally, the server should not run other software that might disrupt the web

application. Furthermore, the server should never be used as a development

server to develop an application. This process could leave temporary, old and

saved files that were created during the development phase on the server. These

files might provide “holes” and traces for the attacker to exploit.

The production server should maintain a sterile environment and all new

development shall be done and verified on a development server (which is on a

separate domain from the production server) before porting it over to the

production server. The production server should never be administered from

outside the domain. It needs to be administered within the domain to prevent any

abuse. All administration should be executed locally on the production server to

prevent any attacks (from inside and outside).

7. DMZ
DMZ is a crucial component of the periphery and network defense for any

organization. It provides not only network level protection but also creates a safe

environment for web applications. The DMZ segregates the external-facing

60

machines from the internal machines, thereby separating the web applications

from each other. By using the DMZ, it permits building differential access for

external users. Additionally, it prevents internal DMZ users from accessing the

applications through the Intranet or other access methods.

E. CHAPTER SUMMARY
This chapter, discussed how vulnerabilities can affect the system through

the design of the system and its processes. In the system design, it was noted

that a single box implementation suffers from a single-point of failure and does

not offer the flexibility to be scalable and provide high availability. Therefore, it

was recommended to separate the applications into different tiers for better

management control. Other security mechanisms were also proposed to be

applied at each tier to secure the system.

In the design of the applications/processes, it was observed that most well

known web attacks exploit the application’s failure to validate the input entry. This

in turn allows attackers to introduce malicious codes into the system. It was

recommended to use various data validation techniques to prevent these

vulnerabilities.

This chapter also proposed implementing a secure session management

scheme and other security mechanisms to secure IMAS.

61

IV. CONCLUSIONS

All systems suffer from vulnerabilities due to bugs found in components

supporting the system. These bugs include (1) errors in software code, (2)

software design, and (3) mis-configurations in installations.

IMAS, like other systems, also suffers from vulnerabilities. In this thesis,

vulnerabilities were identified in the following areas: (1) design and

implementation of IMAS, (2) COTS products used and (3) in-house developed

processes/applications.

The single-box implementation of IMAS suffers from a number of

vulnerabilities. These are: (1) it is a single point of failure, (2) data might be

leaked if the box is exploited, (3) it can be used as a launching pad against other

corporate systems if the system is on a corporate network and (4) it does not

offer the flexibility to apply appropriate security options on different applications.

In addition, the management control of system access and services running on

the box is complicated. This implementation does not scale well.

COTS products used in IMAS contain vulnerabilities that are due to errors

in software code, software design and configuration. Examples include (1) failure

to check and sanitize malicious input entry by applications, (2) enable un-used

services and accounts and (3) weak passwords.

The in-house developed processes/applications contain vulnerabilities due

to their failure to inspect and sanitize inputs. This opens a security gap which

many well-known web attacks can exploit. This results in system crashes, theft of

information and corruption of data.

This thesis recommended several solutions to correct and prevent noted

vulnerabilities. .A 3-tier architecture is recommended for the design and

implementation of IMAS. This architecture separates applications and data into

different tiers and resolves the issues encountered in a single-box

implementation. COTS software used in IMAS are recommended to keep the

62

software version up-to-date so that they are free from reported vulnerabilities.

This is achieved by subscribing to vulnerability alert reports and continuously

applying patches and fixes to the software whenever vulnerabilities are reported.

In addition, recommendations were made to disable un-used accounts and

services in order to keep the system secure.

The in-house developed applications/processes are recommended to

incorporate numerous validation and filtering techniques to deter common web

attacks (that leverage on applications’ failure to validate input entry). This

includes proposing various types of data-type and data-correction validation

techniques for different fields used in IMAS. Furthermore, ways to implement

secure session management and data protection inside the database are also

recommended to enhance the process security of IMAS.

Other security measures such as (1) privacy consideration, (2) event

logging, (3) compartmentalization of data, (4) cache implementation, (5)

segregating the roles of the production server and (5) deployment of IMAS in

DMZ, are recommended to enhance the security of IMAS.

Lastly, it should be noted that vulnerabilities come from all components

supporting IMAS. Hence, efforts must be taken to ensure each component is

continuously analyzed to decrease vulnerabilities. This includes in-house

developed applications and the design of the database. As these two areas were

not covered in this thesis, it is recommended that future studies be made in these

areas to identify probable vulnerabilities. The code of the application should be

reviewed by a panel of security programmers to ensure it is free from design and

code errors. Likewise, the design and implementation of the database should

also be reviewed to ensure it does not contain errors. The removal of errors will

make IMAS more secure.

63

LIST OF REFERENCES

[1] The Design and Implementation of a Prototype Web Portal for the
Integrated Mobile Alert System (IMAS) by Pong De Le & Michael Hsu,
Naval Postgraduate School, June 2006.

[2] ENT News, Windows 2003 Server,
http://www.entmag.com/reports/article.asp?EditorialsID=42, accessed 1
October 2006.

[3] Secuna, Vulnerability Report: Microsoft Windows Server 2003 Standard
Edition, http://secunia.com/product/1173/?task=statistics_2006, accessed
1 December 2006.

[4] SecurityFocus, Vulnerabilities: Microsoft Windows 2003 Server Standard
Edition SP1, http://www.securityfocus.com/bid, accessed 1 December
2006.

[5] Windows Security.com, Windows Server 2003 Hardening List (Part 1),
http://www.windowsecurity.com/articles/Windows-Server-2003-Hardening-
List-Part1.html, accessed 15 November 2006.

[6] Security Elements of IIS 6.0, Anthony DeVoto, SANS Institute 2003.

[7] SecurityFocus, http://www.securityfocus.com/bid, Vulnerabilities: Microsoft
IIS 6.0, accessed 15 November 2006.

[8] Paladion Networks Pvt Ltd., Securing IIS Web Servers,
http://palisade.plynt.com/issues/2006Sep/secure-iis-severs/, accessed 15
October 2006.

[9] The SANS Institute, PHP-based Applications. pp. 14-15,
http://www.sans.org/top20, accessed 5 September 2006.

[10] Aucentix, http://www.acunetix.com/vulnerability-scanner/, Audit your
website with Acunetix Web Vulnerability Scanner, accessed 25 November
2006.

[11] Insecure.org, RPVS-Remote PHP Vulnerability Scanner (open source),
http://seclists.org/fulldisclosure/2005/Jan/0552.html, accessed 25
November 2006.

[12] Insecure.org, FIS [File Inclusion Scanner] v0.1,
http://seclists.org/webappsec/2006/q3/0304.html, accessed 25 November
2006.

64

[13] The SANS Institute, Database Software, pp. 16-17,
http://www.sans.org/top20, accessed 5 September 2006.

[14] The Design and Implementation of a Prototype Web Portal for the
Integrated Mobile Alert System (IMAS), p. 51, by Pong De Le & Michael
Hsu, Naval Postgraduate School, June 2006.

[15] Tony Marston, April 24, 2002, The 3-Tier Architecture – is it hardware or
software?, http://www.marston-
home.demon.co.uk/Tony/uniface/3tierhardsoft.html, accessed 28 October
2006.

[16] ThinkQuest® New York City, Three Tier Web Applications,
http://www.tqnyc.org/tutorial/three_tier/index.php?s=T, accessed 28
October 2006.

[17] Wikipedia, Phishing, http://en.wikipedia.org/wiki/Phishing, accessed 29
October 2006.

[18] Anti-phising.info, Download Anti-Phishing freeware, web browser, toolbar
and scam blocker, http://www.anti-phishing.info/anti-phishing-
freeware.htm, accessed 15 November 2006.

[19] Paladion Networks Pvt Ltd., Anti-Phishing Techniques – Protection
Measures, http://palisade.plynt.com/issues/2006Aug/phishing-protection/,
accessed 30 September 2006.

[20] Do Security Toolbars Actually Prevent Phishing Attacks? Min Wu, Robert
C. Miller, Simson L. Garfinkel, MIT Computer Science and Artificial
Intelligence Lab.

[21] “Airline Web Sites seen As Riddled with Security Holes “, Computerworld,
February 4, 2002, Gartner analyst John Pescatore.

[22] e-mailsoftwaretools.com, E-mail Account Polling Software – Pop3 polling
and e-mail piping script, http://www.e-mailsoftwaretools.com/e-
mailaccount.html, accessed 15 October 2006.

[23] e-mailaddresses.com, , Check Your E-mail, http://www.e-
mailaddresses.com/e-mail_checkpop.htm, accessed 15 October 2006.

[24] mail2web.com, Pick Up Your E-mail, http://www.mail2web.com/, accessed
15 October 2006.

[25] Miranda, Instant Messenger, About Miranda IM, http://www.miranda-
im.org/about/, accessed 17 October 2006.

65

[26] Miranda Instant Messenger, http://addons.miranda-
im.org/details.php?action=viewfile&id=2445, accessed 17 October 2006.

[27] International Numbering Plan, Analysis of telephone numbers,
http://www.numberingplans.com/?page=analysis&sub=phonenr, accessed
18 October 2006.

[28] Wikipedia, International Mobile Equipment Identity,
http://en.wikipedia.org/wiki/IMEI, accessed 20 October 2006.

[29] Wikipedia, MEID, http://en.wikipedia.org/wiki/MEID, accessed 20 October
2006.

[30] International Numbering Plans, Analysis of IMEI numbers,
http://www.numberingplans.com/?page=analysis&sub=imeinr, accessed
20 October 2006.

[31] Telecommunications Industry Association (TIA), Electronic Serial
Numbers (ESN) and MEID,
http://www.tiaonline.org/standards/resources/esn/codes.cfm#14bit,
accessed 21 October 2006.

 [32] CIGSecurity.com, Chapter 10: Date Validation,
http://www.cgisecurity.com/owasp/html/ch10.html, accessed 23 October
2006.

[33] Cross Site Scripting by Amit Klein, Former Director of Security and
Research, a whitepaper from Watchfire.

[34] CIGSecurity.com, Attacks on the System - Direct SQL Commands,
http://www.cgisecurity.com/owasp/html/ch11s03.html, accessed 23
October 2006.

[35] CIGSecurity.com, Attacks on the System - Direct OS Commands,
http://www.cgisecurity.com/owasp/html/ch11s03.html, accessed 23
October 2006.

[36] CIGSecurity.com, Attacks on the System - Path Traversal and Path
Disclosure, http://www.cgisecurity.com/owasp/html/ch11s03.html,
accessed 23 October 2006.

[37] CIGSecurity.com, Attacks on the System -Null Bytes,
http://www.cgisecurity.com/owasp/html/ch11s03.html, accessed 23
October 2006.

[38] CIGSecurity.com, Parameter Manipulation,
http://www.cgisecurity.com/owasp/html/ch11s04.html, accessed 23
October 2006.

66

[39] CIGSecurity.com, Cookie Manipulation,
http://www.cgisecurity.com/owasp/html/ch11s04.html, accessed 23
October 2006.

[40] CIGSecurity.com, HTML Form Field Manipulation,
http://www.cgisecurity.com/owasp/html/ch11s04.html, accessed 23
October 2006.

[41] CIGSecurity.com, URL Manipulation,
http://www.cgisecurity.com/owasp/html/ch11s04.html, accessed 23
October 2006.

[42] CIGSecurity.com, HTTP Header,
http://www.cgisecurity.com/owasp/html/ch11s04.html, accessed 23
October 2006.

[43] HTTP Request Smuggling, Chiam Lin Hart, Amit Klein, Ronen Heled &
Steven Orrin, a whitepaper from Watchfire.

[44] HTTP Response Splitting, Web Cache Poisoning Attacks & Related
Topics, Amit Klein, Director of Security & Research, Sanctum Inc., a
whitepaper from Watchfire.

[45] MySQL AB, 12.10.2 Encryption and Compression Functions,
http://dev.mysql.com/doc/refman/5.1/en/encryption-
functions.html#function_md5,accessed 24 October 2006.

[46] MySQL AB, 5.9.7 Using Secure Connections,
http://dev.mysql.com/doc/refman/5.1/en/secure-connections.html,
accessed 25 October 2006.

[47] MySQL AB, 5.10 Backup and Recovery,
http://dev.mysql.com/doc/refman/5.1/en/disaster-prevention.html,accessed
27 October 2006.

[48] Developing and Deploying Secure Web Applications, a whitepaper from
Watchfire, pp. 6-7.

[49] CIGSecurity.com, Session Management Schemes,
http://www.cgisecurity.com/owasp/html/ch07s03.html, accessed 23
October 2006.

[50] CIGSecurity.com, Privacy Considerations,
http://www.cgisecurity.com/owasp/html/ch12.html, accessed 23 October
2006.

[51] Developing and Deploying Secure Web Applications, a whitepaper from
Watchfire, pp. 8-10.

67

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Yeo Tat Soon
Director, Temasek Defence Systems Institute (TDSI)
National University of Singapore
Singapore

